286 research outputs found

    Impact of Sleep and Its Disturbances on Hypothalamo-Pituitary-Adrenal Axis Activity

    Get PDF
    The daily rhythm of cortisol secretion is relatively stable and primarily under the influence of the circadian clock. Nevertheless, several other factors affect hypothalamo-pituitary-adrenal (HPA) axis activity. Sleep has modest but clearly detectable modulatory effects on HPA axis activity. Sleep onset exerts an inhibitory effect on cortisol secretion while awakenings and sleep offset are accompanied by cortisol stimulation. During waking, an association between cortisol secretory bursts and indices of central arousal has also been detected. Abrupt shifts of the sleep period induce a profound disruption in the daily cortisol rhythm, while sleep deprivation and/or reduced sleep quality seem to result in a modest but functionally important activation of the axis. HPA hyperactivity is clearly associated with metabolic, cognitive and psychiatric disorders and could be involved in the well-documented associations between sleep disturbances and the risk of obesity, diabetes and cognitive dysfunction. Several clinical syndromes, such as insomnia, depression, Cushing's syndrome, sleep disordered breathing (SDB) display HPA hyperactivity, disturbed sleep, psychiatric and metabolic impairments. Further research to delineate the functional links between sleep and HPA axis activity is needed to fully understand the pathophysiology of these syndromes and to develop adequate strategies of prevention and treatment

    Determinants of Slow-Wave Activity in Overweight and Obese Adults: Roles of Sex, Obstructive Sleep Apnea and Testosterone Levels

    Get PDF
    Background: Slow-wave activity (SWA) in non-rapid eye movement (NREM) sleep, obtained by spectral analysis of the electroencephalogram, is a marker of the depth or intensity of NREM sleep. Higher levels of SWA are associated with lower arousability during NREM sleep and protect against sleep fragmentation. Multiple studies have documented that SWA levels are higher in lean women, compared to age-matched lean men, but whether these differences persist in obese subjects is unclear. Obstructive sleep apnea (OSA), a condition associated with obesity, is more prevalent in men than in women. Sex differences in SWA could therefore be one of the factors predisposing men to OSA. Furthermore, we hypothesized that higher levels of testosterone may be associated with lower levels of SWA.Objective: The aim of the current study was to identify sex differences in the determinants of SWA in young and middle-aged overweight and obese adults.Methods: We enrolled 101 overweight and obese but otherwise healthy participants from the community (44 men, 57 women) in this cross-sectional study. Participants underwent an overnight in-laboratory polysomnogram. The recordings were submitted to sleep staging and spectral analysis. Sex differences and the potential contribution of testosterone levels were evaluated after adjusting for age, body mass index and race/ethnicity.Results: OSA was present in 66% of men and in 44% of women. After adjustment for differences in age, race/ethnicity and BMI, the odds ratio for OSA in men vs. women was 3.17 (95% CI 1.14–9.43, p = 0.027). There was a graded inverse relationship between the apnea-hypopnea index (AHI) and SWA in men (β = −0.21, p = 0.018) but not in women (β = 0.10, p = 0.207). In a multivariate regression model, higher testosterone levels were independently associated with lower SWA in men after controlling for age, race/ethnicity and apnea-hypopnea index (β = −0.56, p = 0.025).Conclusion: Increasing severity of OSA was associated with significant decrease in sleep intensity in men but not in women. Higher testosterone levels were associated with lower sleep intensity in men. Men with higher testosterone levels may therefore have lower arousal thresholds and higher ventilatory instability in NREM sleep, and be at greater risk of OSA

    Sex Differences in the Impact of Obstructive Sleep Apnea on Glucose Metabolism

    Get PDF
    Objectives: Obstructive sleep apnea (OSA) is more prevalent in men and is an independent risk factor for type 2 diabetes. We aimed to determine if there are sex differences in the impact of OSA on glucose metabolism in nondiabetic overweight and obese adults.Methods: One hundred and forty-five men and women (age 33.4 ± 0.6, BMI 37.2 ± 0.7, 70.3% blacks) from the community underwent in-laboratory polysomnography. Severity of OSA was assessed by the apnea-hypopnea index (AHI). Glucose tolerance was assessed using fasting glucose, 1-h glucose, 2-h glucose and the area under the curve (AUC) during the 2-h oral glucose tolerance test (OGTT). Fasting insulin resistance was assessed by HOMA-IR, and insulin sensitivity during the OGTT was assessed by the Matsuda Index. Pancreatic beta-cell function was assessed by fasting HOMA-%B and by AUCinsulin/glucose, insulinogenic index, and oral disposition index (DIoral) during the OGTT. All comparisons were adjusted for age, BMI, race and severity of OSA.Results: There were no significant demographic differences between men and women without OSA. Men and women with OSA were similar in age, BMI, and severity of OSA, but there were more black women with OSA. Compared to women with OSA, men with OSA had significantly higher fasting glucose, 1-h glucose levels, AUCglucose, and AUC for insulin secretion rate (AUCISR) but similar 2-h glucose levels. These differences persisted in adjusted analyses. Men with OSA secreted significantly more insulin than women with OSA in order to achieve similar glucose levels. Men with OSA had significantly worse beta cell function as measured by the DIoral than women with OSA. In contrast, there were no significant sex differences in measures of glucose tolerance and beta-cell function in participants without OSA.Conclusion: Men with OSA secreted more insulin compared to women with OSA in order to maintain glucose homeostasis. The adverse impact of OSA on beta-cell responsiveness was larger in men, which may result in an overall greater risk of type 2 diabetes compared to women

    Obesity and insulin sensitivity effects on cardiovascular risk factors: Comparisons of obese dysglycemic youth and adults

    Get PDF
    Background: Obesity and pubertal insulin resistance worsen cardiovascular (CV) risk factors in youth. It is unclear how the relationships of obesity and insulin resistance with CV risk compare to adults. Subjects and Methods: We evaluated 66 pubertal youth (mean ± SD: age 14.2 ± 2.0 years, body mass index [BMI] 36.6 ± 6.0 kg/m2, hemoglobin A1c [HbA1c] 38.5 ± 6.1 mmol/mol) and 355 adults with comparable BMI (age 52.7 ± 9.4 years, BMI 35.1 ± 5.1 kg/m2, HbA1c 39.8 ± 4.2 mmol/mol) participating in a multicenter study. Insulin sensitivity was quantified using hyperglycemic clamps. Assessment of CV risk factors was standardized across sites. Regression analyses compared the impact of insulin sensitivity and CV risk factors between youth and adults. Results: Obese pubertal youth were more insulin resistant than comparably obese adults (P \u3c.001), but with similar slopes for the inverse relationship between insulin sensitivity and obesity. The impact of obesity on CV risk factors was explained by insulin sensitivity (P = NS after adjustment for sensitivity). The two age groups did not differ in relationships between insulin sensitivity and diastolic blood pressure, total cholesterol, and low-density lipoprotein (LDL) cholesterol, after adjusting for obesity. However, while systolic blood pressure (SBP) and high-density lipoprotein (HDL) cholesterol exhibited the expected direct and inverse relationships, respectively with insulin sensitivity in adults, these slopes were flat in youth across the range of insulin sensitivity (P ≤.05 for group differences). Conclusions: Effects of obesity on CV risk factors were attributable to insulin sensitivity in both groups. The relationships between insulin sensitivity and CV risk factors were similar in obese youth and adult groups except for SBP and HDL cholesterol. Clinical Trial Registration: The RISE consortium studies are registered through Clinicaltrials.gov as NCT01779362 (Adult Medication Study); NCT01763346 (Adult Surgery Study); and NCT01779375 (Pediatric Medication Study). Clinical trial registration numbers: NCT01779362, NCT01779375 and NCT01763346 at clinicaltrials.gov

    Impact of Sleep and Circadian Disruption on Energy Balance and Diabetes: A Summary of Workshop Discussions

    Get PDF
    A workshop was held at the National Institute for Diabetes and Digestive and Kidney Diseases with a focus on the impact of sleep and circadian disruption on energy balance and diabetes. The workshop identified a number of key principles for research in this area and a number of specific opportunities. Studies in this area would be facilitated by active collaboration between investigators in sleep/circadian research and investigators in metabolism/diabetes. There is a need to translate the elegant findings from basic research into improving the metabolic health of the American public. There is also a need for investigators studying the impact of sleep/circadian disruption in humans to move beyond measurements of insulin and glucose and conduct more in-depth phenotyping. There is also a need for the assessments of sleep and circadian rhythms as well as assessments for sleep-disordered breathing to be incorporated into all ongoing cohort studies related to diabetes risk. Studies in humans need to complement the elegant short-term laboratory-based human studies of simulated short sleep and shift work etc. with studies in subjects in the general population with these disorders. It is conceivable that chronic adaptations occur, and if so, the mechanisms by which they occur needs to be identified and understood. Particular areas of opportunity that are ready for translation are studies to address whether CPAP treatment of patients with pre-diabetes and obstructive sleep apnea (OSA) prevents or delays the onset of diabetes and whether temporal restricted feeding has the same impact on obesity rates in humans as it does in mice

    Method for characterization of 24-h temporal variation of blood components

    No full text
    A statistical method developed specifically for the characterization of the variations of hormones and other serum constituents over the 24-h span is presented and illustrated. The relatively reduced length of such series of data and the coexistence of periodic (such as circadian rhythm) and nonperiodic (such as episodic variations) components forbid the use of classical spectral methods or of procedures based on models including a single periodicity. In the proposed method, the significance of the observed fluctuations is first tested against the hypothesis of their pure random occurrence. Then, periodogram calculations provide a best-fit theoretical pattern describing the low-frequency variation of the profile and accounting for its possible asymmetries. The amplitude and the acrophase are defined. Estimations of the relative contributions of low (e.g. circadian) and high (e.g. ultradian) components in the time dependence of the profile as well as indications regarding the frequency range and the periodicity or nonperiodicity of ultradian components are obtained. The method is applied to observations over the 24-h span of corticotropin, cortisol, thyrotropin, prolactin, β-melanocyte-stimulating hormone (β-MSH), and dopamine-β-hydroxylase (DBH) levels in plasma. Its ability to summarize the global time properties of the profiles and to provide standards of normalcy as well as objective bases of comparison between profiles is illustrated. The analysis of the profile of DBH observed in control subjects and in depressed patients examplifies how alterations associated with pathology may be quantified.SCOPUS: NotDefined.jinfo:eu-repo/semantics/publishe
    corecore